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Abstract: The paper describes numerical simulation of the motion of an one-dimensional pendulum with 
a reaction wheel. Three laws for controlling both the pendulum and the wheel have been studied successively. 
The goal is to balance the pendulum in an upright position. The control loop includes proportional and derivative 
term. Governing differential equations are solved by means of block diagrams in SciLab / xCos environment. The 
block diagrams are published, so are the numerical results. 
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Резюме: В доклада е описана числена симулация на движението на махало с инерционен 

маховик. Изучени са последователно три закона за управление на махалото и маховика. Целта е да се 
балансира махалото в изправено положение. Контурът за управление включва пропорционално и 
диференциращо звено. Диференциалните уравнения, описващи движението, са решени с блокови схеми 
в среда SciLab / xCos. Публикувани са блок-схемите, както и получените числени резултати. 

 
 
Introduction 

 

Task of satellite attitude control is commonly accomplished by means of the so-called reaction 
wheel(s), i.e. a flywheel giving the satellite a stored amount of angular momentum. The conservation 
law implies that total angular momentum of a mechanical system remains unchanged on condition that 
an external torque is not applied. Hence, the satellite counter-rotates according to changes in wheel 
angular velocity vector. This concept of attitude control is solely applicable to small satellites. 

This paper makes reference to the work of Block et al. who did an innovative research on 
reaction wheel pendulum and published the results in monography [1]. Authors set out a powerful 
mathematical apparatus to describe both pendulum and wheel dynamics and go further into great 
detail to support their assertions. Both linearized and non-linear pendulum models are examined fully. 
A connection between PID controller coefficients and system stability is established. Exemplary 
problems are solved and discussed for different cases of pendulum / wheel control. 

The current research draws an analogy between experimental and numerical results by 
proposing a feasible alternative to real pendulum and wheel dynamics. To work out a numerical 
solution to linearized equations governing both pendulum and wheel is a primary goal of the presented 
study. The equations are proposed by Block et al. in monography [1]. Three study cases are 
thoroughly investigated: 

 a simple proportional-derivative (PD) control of pendulum angle; 

 a PD control of pendulum angle and wheel angular velocity; 

 a PD control of pendulum angle and wheel angle. 
The experiment was implemented in SciLab / xCos, [2] environment. 
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Materials and Methods 
 

In Fig. 1, a two-dimensional projection view is shown alongside a three-dimensional 
perspective view of both wheel and pendulum under consideration. 

  
 

Fig. 1a. Experiment setup 
 

Fig. 1b. Inverted pendulum 3D 

 
The experiment setup consists of a pivot, an inverted pendulum, and a reaction wheel, Fig. 1a. In 
order that pendulum maintains upright stance, the wheel should rotate in accordance with a control 
law. Throughout the numerical experiment, values of pendulum angle and wheel revolutions / angle 
are fed back to the system input. Actuating and sensing devices are neglected which is why the 
results are less likely to depend on angle (or angular velocity) sensor resolution, for instance a rotary 
encoder. Driving motors, cables are also omitted to simplify the experiment further. The system mass 
properties resemble those quoted in monography [1] as closely as possible. 

 
Governing Equations 

 

The governing ordinary differential equations (ODE) are borrowed from monography [1] in the 
form they were derived. The model describing system dynamics is following 
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where θ is pendulum deflection angle, θr is wheel deflection angle, u is control input, F is friction 
torque on the motor axis, a, bp, br are constants depending on system mass properties and DC motor 
current, [1]. In current research, friction is neglected, equations are linearized about the pendulum 
upright position θ = π. Therefore, both pendulum and wheel obey the following simplified law: 
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By introducing a control law of pendulum angle θ (simple PD controller) 

(3)     pp dpu k k     

and subsequently inserting in Eq. (2), following equations and SciLab / xCos subsystem, Fig. 2, are 
obtained: 
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Fig. 2. Subsystem for working out a solution to system ODEs (4) (pendulum angle) 

 
Alternatively, after applying a control law of pendulum angle θ and wheel angular velocity 

ω = dθr/dt 

(5)     0pp dp dru k k k         

governing equations and SciLab / xCos subsystem are obtained as follows: 
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Fig. 3. Subsystem for working out a solution to system ODEs (6) (wheel angular velocity) 
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Finally, following control law of pendulum angle θ and wheel angle θr 

(7)     0pp dp pr r dr ru k k k k          

results in governing equations 
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In equations above, d (1 if t ∈ [3; 4); 0 otherwise) stands for a disturbance torque. 
The SciLab / xCos subsystem, corresponding to eq. (8), is shown in Fig. 4: 

 
Fig. 4. Subsystem for working out a solution to system ODEs (8) (wheel angle) 

 
Controller coefficients are derived taking into account characteristic polynomials of systems 

ODEs (4), (6), and (8). Coefficients values depend on pendulum oscillation frequency and system 
damping ratio. Values obtained in current study are following: 

 Generic coefficients and mass properties 
 a = 78.908; bp = 0.9537; br = 207.11; mr = 0.265 kg; mp = 0.092 kg; Jp = 211.662e-06 kg.m2; 
Jr = 238.134e-06 kg.m2; lp = 86.32e-03 m; lr = 127e-03 m; l = 116.5, (Fig. 1a) 

https://en.wikipedia.org/wiki/%E2%88%88
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 Pendulum angle: kpp = –268.90; kdp = –19.758; ς = 0.707 

 Wheel angular velocity: kdr = –0.028951; kpp = –321.55; kdp = –28.839;  
wref =10.471976 rad/s = 100 rpm; ω0 = 13.325; ς = 0.707; α = 0.2 

 Wheel angle: kpp = –564.93; kdp = –63.597; kpr = –0.3810; kdr = –0.1464; θref = 0; ω1 = 
8.883; ς1 = 0.707; ω2 = 8.883; ς2 = 1 

Details on how to compute coefficients might be found in monography [1]. 
Mass and inertial properties of both pendulum and rotor were computed taking into account 

density of stainless steel, 8 g/cm3. Both linear and angular dimensions are shown in Fig. 1a along with 
mass centres locations and part names. 

 
Results 

 

Following results are obtained for three study cases as follows. 

 Simple PD controller (Fig. 2) of pendulum angle only 
 

  
 

Fig 5a. Pendulum deflection, deg, vs. time, s 
 

Fig. 5b. Wheel angular velocity, rpm, vs. time, s 

 

 PD controller (Fig. 3) of pendulum angle and wheel angular velocity 
 

  
 

Fig. 6a. Pendulum deflection, deg, vs. time, s 
 

Fig. 6b. Wheel angular velocity, rpm, vs. time, s 

 

 PD controller (Fig. 4) of pendulum angle and wheel angle 
 

  
 

Fig. 7a. Pendulum deflection, deg, vs. time, s 
 

Fig. 7b. Wheel deflection, revolutions, vs. time, s 
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Discourse 
 

Consider Fig. 5. Although the pendulum is able to restore initial upright attitude, the wheel 
angular speed reaches saturation limit fast. At the onset of a disturbance torque, the wheel starts 
accelerating at constant rate. This result was discussed in monography [1] and confirmed by the 
numerical experiment. Feedback from wheel angle / angular speed is not introduced by control law (3) 
whatsoever (open loop), hence the (intuitively predictable) results. 

Consider Fig. 6. Initial values of angular velocity ω = dθr/dt imply that the wheel maintains 100 
rpm. The wheel rotates about 10 times faster at the end of a disturbance pulse applied to the 
pendulum. After the disturbance torque ceases, the wheel restores value of initial angular rate. 

Consider Fig. 7. During the disturbance torque, the wheel rotates three revolutions in both 
directions. After the disturbance torque comes to an end, the wheel restores initial angle of deflection. 

It should be noted that Fig. 5a, 6a, and 7a depict pendulum deviations δθ = θ – π. The 
problem is well posed and the solution is correct so long as disturbance torque d is small. 

Alternatively, source code in Appendix might be used if block diagrams are less preferable. 
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Appendix. Source code for solving Eq. (4)  
 

GNU Octave, [3] SciLab, [2] 

clear; 

 

function [pulse] = d(t) 

 

  if (t < 3 || t >= 4) 

    pulse = 0; 

  else 

    pulse = 1; 

  end 

 

end 

 

function [dx] = sys(t, x) 

 

  % Parameters 

  a = 78.908; bp = 0.9537; br = 207.11; 

 

  % PID tuning 

  kpp = -268.90; kdp = -19.758; 

 

  dx = zeros(4, 1); 

 

  A = 

[0,1,0,0;a,0,0,0;0,0,0,1;0,0,0,0]; 

  B = [0; -bp; 0; br;]; 

  K = [-kpp, -kdp, 0, 0]; 

  u = K*x; 

  dx = A*x + B*u + [0; d(t); 0; 0]; 

 

end 

 

tspan = 0:0.1:10; 

x0 = [0; 0; 100; 0]; 

[t, x] = ode45(@sys, tspan, x0); 

 

figure(1); % theta 

plot(t, x(:, 1) * 180/pi, 'g'); 

grid on 

 

figure(2); % theta_r 

plot(t, x(:, 3) * 9.549297, 'm'); 

grid on 

clear; 

 

function [pulse] = d(t) 

 

  if (t < 3 || t >= 4) 

    pulse = 0; 

  else 

    pulse = 1; 

  end 

 

end 

 

function [dx] = sys(t, x) 

 

  // Parameters 

  a = 78.908; bp = 0.9537; br = 207.11; 

 

  // PID tuning 

  kpp = -268.90; kdp = -19.758; 

 

  dx = zeros(4, 1); 

 

  A = [0,1,0,0;a,0,0,0;0,0,0,1;0,0,0,0]; 

  B = [0; -bp; 0; br]; 

  K = [-kpp, -kdp, 0, 0]; 

  u = K*x; 

  dx = A*x + B*u + [0; d(t); 0; 0]; 

 

end 

 

tspan = 0:0.1:10; 

x0 = [0; 0; 100; 0]; 

x = ode("rkf", x0, 0, tspan, sys); 

 

figure(1); // theta 

plot(tspan, x(1, :) * 180/%pi); 

xgrid(1, 1, 7); 

 

figure(2); // theta_r 

plot(tspan, x(3, :) * 9.549297); 

xgrid(1, 1, 7); 

 


