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Abstract: The paper describes numerical simulation of the motion of an one-dimensional pendulum with
a reaction wheel. Three laws for controlling both the pendulum and the wheel have been studied successively.
The goal is to balance the pendulum in an upright position. The control loop includes proportional and derivative
term. Governing differential equations are solved by means of block diagrams in SciLab / xCos environment. The
block diagrams are published, so are the numerical results.
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Pe3rome: B doknada e onucaHa yucrneHa cumyrnauyusi Ha OBUXEHUemo Ha Maxasnio C UHEePUUOHEH
Maxosuk. M3yyeHu ca nocredosamesiHo mpuU 3aKoHa 3a yrpaeneHue Ha Maxanomo u Maxosuka. Llenma e da ce
banaHcupa Maxasomo 6 u3rnpaseHo ronoxeHue. KoHmypbm 3a yrnpaseneHue eK/dYea MpornopyuoHaiHo u
dughepeHyupauio 38eHo. [ughepeHyuanHume ypasHeHuUs, ornuceawu deuwxeHUemo, ca peweHu ¢ 6r10kosu cxemu
8 cpeda ScilLab / xCos. lNybnukysaHu ca bioK-cxemume, Kakmo u roslydeHume YucrieHu pesyamamu.

Introduction

Task of satellite attitude control is commonly accomplished by means of the so-called reaction
wheel(s), i.e. a flywheel giving the satellite a stored amount of angular momentum. The conservation
law implies that total angular momentum of a mechanical system remains unchanged on condition that
an external torque is not applied. Hence, the satellite counter-rotates according to changes in wheel
angular velocity vector. This concept of attitude control is solely applicable to small satellites.

This paper makes reference to the work of Block et al. who did an innovative research on
reaction wheel pendulum and published the results in monography [1]. Authors set out a powerful
mathematical apparatus to describe both pendulum and wheel dynamics and go further into great
detail to support their assertions. Both linearized and non-linear pendulum models are examined fully.
A connection between PID controller coefficients and system stability is established. Exemplary
problems are solved and discussed for different cases of pendulum / wheel control.

The current research draws an analogy between experimental and numerical results by
proposing a feasible alternative to real pendulum and wheel dynamics. To work out a numerical
solution to linearized equations governing both pendulum and wheel is a primary goal of the presented
study. The equations are proposed by Block et al. in monography [1]. Three study cases are
thoroughly investigated:

e a simple proportional-derivative (PD) control of pendulum angle;
e a PD control of pendulum angle and wheel angular velocity;
e aPD control of pendulum angle and wheel angle.
The experiment was implemented in SciLab / xCos, [2] environment.
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Materials and Methods

In Fig. 1, a two-dimensional projection view is shown alongside a three-dimensional
perspective view of both wheel and pendulum under consideration.

Pendulum

Fig. 1a. Experiment setup Fig. 1b. Inverted pendulum 3D

The experiment setup consists of a pivot, an inverted pendulum, and a reaction wheel, Fig. la. In
order that pendulum maintains upright stance, the wheel should rotate in accordance with a control
law. Throughout the numerical experiment, values of pendulum angle and wheel revolutions / angle
are fed back to the system input. Actuating and sensing devices are neglected which is why the
results are less likely to depend on angle (or angular velocity) sensor resolution, for instance a rotary
encoder. Driving motors, cables are also omitted to simplify the experiment further. The system mass
properties resemble those quoted in monography [1] as closely as possible.

Governing Equations

The governing ordinary differential equations (ODE) are borrowed from monography [1] in the
form they were derived. The model describing system dynamics is following

6+asin(0)=-b,(u-F)
6. =D, (u-F)

where 0 is pendulum deflection angle, 6, is wheel deflection angle, u is control input, F is friction
torque on the motor axis, a, by, b, are constants depending on system mass properties and DC motor
current, [1]. In current research, friction is neglected, equations are linearized about the pendulum
upright position 8 = 1. Therefore, both pendulum and wheel obey the following simplified law:

)

6-a0=-b,u
@ ..
6, =b.u
By introducing a control law of pendulum angle 6 (simple PD controller)
3) u=-k,0-k,0

and subsequently inserting in Eqg. (2), following equations and SciLab / xCos subsystem, Fig. 2, are
obtained:

é_bpkdpé_(bpkpp+a)0:d 9(0)20 9(0):0

“ 6. +b.ky,0+bk 0=0 6 (0)=const 6,(0)=0
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Fig. 2. Subsystem for working out a solution to system ODEs (4) (pendulum angle)

Alternatively, after applying a control law of pendulum angle 8 and wheel angular velocity
w = de,/dt

(5) u=—k,,0-Ky,0+ky (0, — o)
governing equations and SciLab / xCos subsystem are obtained as follows:

0 —byky,0—(a+byk,, )0 -bk,0=-bk,m+d 9(0)=0 6(0)=0
© b, (kdp9+kpp9)+a')+b,kd,a):brkdra)o w(0) = const
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Fig. 3. Subsystem for working out a solution to system ODEs (6) (wheel angular velocity)
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Finally, following control law of pendulum angle 8 and wheel angle 6,
@) u=k,, (6, —0)—Ky,0+k, 0 —k6,
results in governing equations

6—b,ky,0—6(a+byk,, )=, (k.6 +k,6,)=-bk,6,+d 9(0)=0 @(0)=0

P pp prr
by (ka8 +Kpp0)+ 6, + bk, 6, +b K, 0, =b K6, 6,(0)=0 6,(0)=0
In equations above, d (1 if t € [3; 4); 0 otherwise) stands for a disturbance torque.
The ScilLab / xCos subsystem, corresponding to eq. (8), is shown in Fig. 4:

(8)
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Fig. 4. Subsystem for working out a solution to system ODEs (8) (wheel angle)

Controller coefficients are derived taking into account characteristic polynomials of systems
ODEs (4), (6), and (8). Coefficients values depend on pendulum oscillation frequency and system
damping ratio. Values obtained in current study are following:
e Generic coefficients and mass properties
a = 78.908; bp = 0.9537; br = 207.11; mr = 0.265 kg; mp = 0.092 kg; Jp = 211.662e-06 kg.m?;
Jr = 238.134e-06 kg.m?; Ip = 86.32e-03 m; Ir = 127e-03 m; | = 116.5, (Fig. 1a)
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Pendulum angle: kpp = —268.90; kdp =-19.758; ¢ = 0.707

Wheel angular velocity: kdr = -0.028951; kpp = —321.55; kdp = —28.839;

wref =10.471976 rad/s = 100 rpm; w0 = 13.325; ¢ =0.707; a = 0.2

Wheel angle: kpp = —564.93; kdp = —63.597; kpr = —0.3810; kdr = —0.1464; 6ref = 0; w1 =
8.883; ¢1=0.707; w2 = 8.883; ¢2 =1

Details on how to compute coefficients might be found in monography [1].

Mass and inertial properties of both pendulum and rotor were computed taking into account

density of stainless steel, 8 g/cm?3. Both linear and angular dimensions are shown in Fig. 1a along with
mass centres locations and part names.

Pendulum deflection, deg Pendulum deflection, deg

Pendulum deflection, deg

Results

Following results are obtained for three study cases as follows.
Simple PD controller (Fig. 2) of pendulum angle only
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e PD controller (Fig. 3) of pendulum angle and wheel angular velocity
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Discourse

Consider Fig. 5. Although the pendulum is able to restore initial upright attitude, the wheel
angular speed reaches saturation limit fast. At the onset of a disturbance torque, the wheel starts
accelerating at constant rate. This result was discussed in monography [1] and confirmed by the
numerical experiment. Feedback from wheel angle / angular speed is not introduced by control law (3)
whatsoever (open loop), hence the (intuitively predictable) results.

Consider Fig. 6. Initial values of angular velocity w = d@,/dt imply that the wheel maintains 100
rom. The wheel rotates about 10 times faster at the end of a disturbance pulse applied to the
pendulum. After the disturbance torque ceases, the wheel restores value of initial angular rate.

Consider Fig. 7. During the disturbance torque, the wheel rotates three revolutions in both
directions. After the disturbance torque comes to an end, the wheel restores initial angle of deflection.

It should be noted that Fig. 5a, 6a, and 7a depict pendulum deviations 60 = 8 — 1. The
problem is well posed and the solution is correct so long as disturbance torque d is small.

Alternatively, source code in Appendix might be used if block diagrams are less preferable.
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Appendix. Source code for solving Eq. (4)

GNU Octave, [3] ScilLab, [2]
clear; clear;
function [pulse] = d(t) function [pulse] = d(t)
if (Lt < 3 || t >= 4) if (& < [l & >= 4)
pulse = 0; pulse = 0;
else else
pulse = 1; pulse = 1;
end end
end end
function [dx] = sys(t, x) function [dx] = sys(t, x)
% Parameters Parameters
a = 78.908; bp = 0.9537; br = 207.11; a = ; bp = ; br = ;
% PID tuning PID tuning
kpp = -268.90; kdp = -19.758; kpp = - ; kdp = - ;
dx = zeros (4, 1); dx = zeros (4, 1);
A = A [ ’ ’ ’ ;al ’ ’ 14 ’ ’ ’ 4 ’ ’ ’ j|’
(0,1,0,0;a4,0,0,0;0,0,0,1;0,0,0,0]; B = [0U; -bp; 0; br];
B [0; -bp; 0; br;]; K = [~kpp, -kdp, 0, O];
K = [-kpp, -kdp, O, O]; u = K*x;
u = K*x; dx = A*x + B*u + [0; d(t); 0; 0];
dx = A*x + B*u + [0; d(t); 0; 071;
end
end
tspan = ;
tspan = 0:0.1:10; x0 = [0; O; ;017
x0 = [0; 0; 100; 01, x = ode ( , x0, , tspan, sys);
[t, x] = oded5(@sys, tspan, x0);
figure(1l); theta
figure(l); % theta plot (tspan, x(1, :) * / ) ;
plot(t, x(:, 1) * 180/pi, 'g'"); xgrid (1, 1, 7);
grid on
figure(2); theta
figure(2); % theta r plot (tspan, x(3, :) * );
plot(t, x(:, 3) * 9.549297, 'm'); xgrid (1, 1, ) ;
grid on
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